

Kingston Technology Secure Digital™ High Capacity - Micro Series Digital Storage Cards

1. Introduction

The High Capacity microSD memory card is functionally compatible with the SD memory specification but is smaller in dimension. This microSD memory card can also be inserted into a microSD memory card adapter and used as a standard Secure Digital memory card.

2. Part Number(s)

- SDC4/4GB
- SDC4/8GB

3. SD Card Features

Table 1: SDHC Card Features

Design	Standard	
Contents	None (OEM Design Available)	
Security Functions	SD Security Specification Ver.2.00 Compliant (CPRM Based) *CPRM: Contents Protection for Recording Media Specification	ID, MKB Programmed
Logical Format	SD Files System Specification Ver.2.00 Compliant (DOS-FAT Based formatted)	
Electrical	Operating Voltage: 2.7V to 3.6V (Memory Operation) Interfaces: SD Card Interface, (SD : 4 or 1bit) SPI Mode Compatible SD Physical Layer Specification Ver.2.00 Compliant	
Physical	L: 15, W: 11, T: 1.0 (mm), Weight: 0.5g (typ.) microSD Memory Card Specification Ver. 1.00 Compliant (Detailed Dimensions included at: Appendix .1)	
Durability	SD Physical Layer Specification Ver.2.00 Compliant microSD Memory Card Specification Ver. 1.00 Compliant	
ROHS	ROHS Compatible.	

4. Compatibility Compliant Specifications

- SD Memory Card Specifications
 - Compliant with PHYSICAL LAYER SPECIFICATION Ver.2.00. (Part1)
 - Compliant with FILE SYSTEM SPECIFICATION Ver.2.00. (Part2)
 - Compliant with SECURITY SPECIFICATION Ver.2.00. (Part3)
 - microSD Memory Card Specification Ver.1.00

Supplementary Explanation are described in "8. Others: Limited Conditions, SD Specification Compliance" in this document.

5. Physical Characteristics

5.1. Environmental Characteristics

1) Operation Conditions

Temperature Range: Ta = -25° to +85° C

2) Storage Conditions

Temperature Range: Tstg = -40° to +85° C

5.2. Physical Characteristics

1) Hot Insertion or Removal

Kingston microSD Card can be removed and/ or inserted without powering off the host system.

2) Mechanical Write Protect Switch

microSD memory Card has no mechanical write protect switch.

Table.4: SPI Mode Command set (+: Implemented, -: Not Implemented)

CMD Index	Abbreviation	Implementa	Note
CMD0	GO IDLE STATE	+	
CMD1	SEND OP CND	+	NOTICE: DO NOT USE (SEE Fig.6 and 9.2)
CMD9	SEND CSD	+	
CMD10	SEND CID	+	
CMD12	STOP TRANSMISSION	+	
CMD13	SEND STATUS	+	
CMD16	SET BLOCKLEN	+	
CMD17	READ SINGLE BLOCK	+	
CMD18	READ_MULTIPLE_BLOCK	+	
CMD24	WRITE BLOCK	+	
CMD25	WRITE MULTIPLE BLOCK	+	
CMD27	PROGRAM CSD	+	
CMD28	SET_WRITE_PROT	-	Internal Write Protection is not implemented.
CMD29	CLR_WRITE_PROT	-	Internal Write Protection is not implemented.
CMD30	SEND WRITE PROT	-	Internal Write Protection is not implemented.
CMD32	ERASE WR BLK START ADDR	+	
CMD33	ERASE WR BLK END ADDR	+	
CMD38	ERASE	+	
CMD42	LOCK UNLOCK	+	
CMD55	APP CMD	+	
CMD56	GEN CMD	-	This command is not specified .
CMD58	READ OCR	+	
CMD59	CRC ON OFF	+	
ACMD6	SET BUS WIDTH	+	
ACMD13	SD_STATUS	+	
ACMD22	SEND_NUM_WR_BLOCKS	+	
ACMD23	SET_WR_BLK_ERASE_COUNT	+	
ACMD41	SD_APP_OP_COND	+	
ACMD42	SET_CLR_CARD_DETECT	+	
ACMD51	SEND_SCR	+	
ACMD18	SECURE READ MULTI BLOCK	+	
ACMD25	SECURE_WRITE_MULTI_BLOCK	+	
ACMD26	SECURE_WRITE_MKB	+	
ACMD38	SECURE_ERASE	+	
ACMD43	GET_MKB	+	
ACMD44	GET_MID	+	
ACMD45	SET_CER_RN1	+	
ACMD46	SET CER RN2	+	
ACMD47	SET_CER_RES2	+	
ACMD48	SET_CER_RES1	+	
ACMD49	CHANGE_SECURE_AREA	+	

CMD28,29,30 and CMD42 are Optional Commends.

> CMD56 is for vender specific command. Which is not defined in the standard card.

6.2 microSD Card Bus Topology

The microSD Memory Card supports two alternative communication protocols: SD and SPI Bus Mode.

Host System can choose either one of modes. Same Data of the microSD Card can read and write by both modes.

SD Mode allows the 4-bit high performance data transfer. SPI Mode allows easy and common interface for SPI channel. The disadvantage of this mode is loss of performance, relatively to the SD mode.

6.2.1 SD Bus Mode protocol

The SD bus allows the dynamic configuration of the number of data line from 1 to 4 Bi-directional data signal. After power up by default, the microSD card will use only DATO. After initialization, host can change the bus width.

Multiplied microSD cards connections are available to the host. Common V_{dd} , V_{ss} and CLK signal connections are available in the multiple connection. However, Command, Respond and Data lined (DAT0-DAT3) shall be divided for each card from host.

This feature allows easy trade off between hardware cost and system performance. Communication over the microSD bus is based on command and data bit stream initiated by a start bit and terminated by stop bit.

Command:

Commands are transferred serially on the CMD line. A command is a token to starts an operation from host to the card. Commands are sent to a addressed single card(addressed Command) or to all connected cards (Broad cast command).

Response:

Responses are transferred serially on the CMD line.

A response is a token to answer to a previous received command. Responses are sent from a addressed single card or from all connected cards.

Data:

Data can be transfer from the card to the host or vice versa. Data is transferred via the data lines.

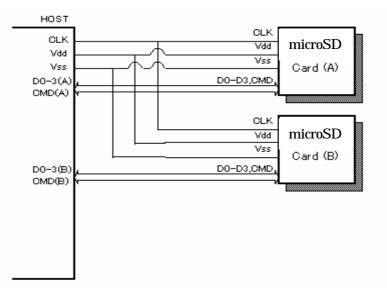


Fig 4: microSD Card (SD Mode) connection Diagram

CLK	: Host card Clock signal
CMD	: Bi-directional Command/ Response Signal
DAT0 - DAT3	: 4 Bi-directional data signal
V _{dd}	: Power supply
V _{ss}	: GND
DAT0 - DAT3 V _{dd}	: 4 Bi-directional data signal : Power supply

Table 3.:SD Mode Command Set

CMD Index	Abbreviation	Implementa tion	Note
CMD0	GO IDLE STATE	+	
CMD2	ALL_SEND_CID	+	
CMD2 CMD3	SEND RELATIVE ADDR	+	
CMD3 CMD4	SET DSR	· ·	DSR Register is not implemented.
CMD7	SELECT/DESELECT CARD	+	
CMD9	SEND CSD	+	
CMD10	SEND CID	+	
CMD10	STOP TRANSMISSION	+	
CMD12 CMD13	SEND STATUS	+	
CMD15	GO INACTIVE STATE	+	
CMD16	SET BLOCKLEN	+	
CMD17	READ SINGLE BLOCK	+	
CMD18	READ MULTIPLE BLOCK	+	
CMD24	WRITE BLOCK	+	
CMD25	WRITE MULTIPLE BLOCK	+	
CMD27	PROGRAM CSD	+	
CMD28	SET WRITE PROT	-	Internal Write Protection is not implemented.
CMD29	CLR WRITE PROT	_	Internal Write Protection is not implemented.
CMD30	SEND WRITE PROT	-	Internal Write Protection is not implemented.
CMD32	ERASE WR BLK START	+	
CMD33	ERASE WR BLK END	+	
CMD38	ERASE	+	
CMD42	LOCK UNLOCK	+	
CMD55	APP CMD	+	
CMD56	GEN CMD	-	This command is not specified .
ACMD6	SET BUS WIDTH	+	
ACMD13	SD STATUS	+	
ACMD22	SEND NUM WR BLOCKS	+	
ACMD23	SET WR BLK ERASE COUNT	+	
ACMD41	SD APP OP COND	+	
ACMD42	SET CLR CARD DETECT	+	
ACMD51	SEND SCR	+	
ACMD18	SECURE READ MULTI BLOCK	+	
ACMD25	SECURE WRITE MULTI BLOCK	+	
ACMD26	SECURE WRITE MKB	+	
ACMD38	SECURE_ERASE	+	
ACMD43	GET_MKB	+	
ACMD44	 GET_MID	+	
ACMD45	SET_CER_RN1	+	
ACMD46	SET_CER_RN2	+	
ACMD47	SET_CER_RES2	+	
ACMD48	SET_CER_RES1	+	
ACMD49	CHANGE_SECURE_AREA	+	

- CMD28,29,30 and CMD42 are Optional Commands.
 CMD4 is not implemented because DSR register (Optional Register) is not implemented.
 CMD56 is for vender specific command. Which is not defined in the standard card.

6.2.2 SPI Bus mode Protocol

The SPI bus allows 1 bit Data line by 2-chanel (Data In and Out).

The SPI compatible mode allows the MMC Host systems to use SD card with little change. The SPI bus mode protocol is byte transfers.

All the data token are multiples of the bytes (8-bit) and always byte aligned to the CS signal.

The advantage of the SPI mode is reducing the host design in effort.

Especially, MMC host can be modified with little change.

The disadvantage of the SPI mode is the loss of performance versus SD mode.

Caution: Please use SD Card Specification. DO NOT use MMC Specification.

For example, initialization is achieved by ACMD41, and be careful to Register. Register definition is different, especially CSD Register.

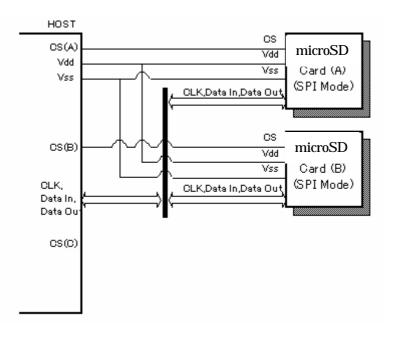


Fig 5: microSD card (SPI mode) connection diagram

Table.4: SPI Mode Command set (+: Implemented, -: Not Implemented)

CMD Index	Abbreviation	Implementa	Note
		tion	T NOIC
CMD0	GO IDLE STATE	+	
CMD1	SEND OP CND	+	NOTICE: DO NOT USE (SEE Fig.6 and 9.2)
CMD9	SEND CSD	+	
CMD10	SEND CID	+	
CMD12	STOP TRANSMISSION	+	
CMD13	SEND_STATUS	+	
CMD16	SET_BLOCKLEN	+	
CMD17	READ_SINGLE_BLOCK	+	
CMD18	READ_MULTIPLE_BLOCK	+	
CMD24	WRITE_BLOCK	+	
CMD25	WRITE_MULTIPLE_BLOCK	+	
CMD27	PROGRAM_CSD	+	
CMD28	SET_WRITE_PROT	-	Internal Write Protection is not implemented.
CMD29	CLR_WRITE_PROT	-	Internal Write Protection is not implemented.
CMD30	SEND_WRITE_PROT	-	Internal Write Protection is not implemented.
CMD32	ERASE_WR_BLK_START_ADDR	+	· ·
CMD33	ERASE_WR_BLK_END_ADDR	+	
CMD38	ERASE	+	
CMD42	LOCK_UNLOCK	+	
CMD55	APP CMD	+	
CMD56	GEN CMD	-	This command is not specified .
CMD58	READ OCR	+	·
CMD59	CRC ON OFF	+	
ACMD6	SET BUS WIDTH	+	
ACMD13	SD_STATUS	+	
ACMD22	SEND_NUM_WR_BLOCKS	+	
ACMD23	SET_WR_BLK_ERASE_COUNT	+	
ACMD41	SD_APP_OP_COND	+	
ACMD42	SET_CLR_CARD_DETECT	+	
ACMD51	SEND_SCR	+	
ACMD18	SECURE READ MULTI BLOCK	+	
ACMD25	SECURE WRITE MULTI BLOCK	+	
ACMD26	SECURE WRITE MKB	+	
ACMD38	SECURE ERASE	+	
ACMD43	GET MKB	+	
ACMD44	GET_MID	+	
ACMD45	SET_CER_RN1	+	
ACMD46	SET CER RN2	+	
ACMD47	SET CER RES2	+	
ACMD48	SET CER RES1	+	
ACMD49	CHANGE SECURE AREA	+	

> CMD28,29,30 and CMD42 are Optional Commends.

> CMD56 is for vender specific command. Which is not defined in the standard card.

6.3. microSD Card Initialize

To initialize the Toshiba microSD card, follow the following procedure is recommended example.

1) Supply Voltage for initialization.

Host System can apply the Operating Voltage from initialization to the card.

Apply more than 74 cycles of Dummy-clock to the microSD card.

2) Select operation mode (SD mode or SPI mode)

In case of SPI mode operation, host should drive 1 pin(CD/DAT3) of SD Card I/F to "Low" level. Then, issue CMD0.

In case of SD mode operation, host should drive or detect 1 pin of microSD Card I/F (Pull up register of 1 pin is pull up to "High" normally).

Card maintain selected operation mode except re-issue of CMD0 or power on below is SD mode initialization procedure.

3) Send the ACMD41 with Arg = 0 and identify the operating voltage range of the miniCard.

4) Apply the indicated operating voltage to the card.

Reissue ACMD41 with apply voltage storing and repeat ACMD41 until the busy bit is cleared.

(Bit 31 Busy = 1) If response time out occurred, host can recognize not microSD Card.

Note: In MMC-SPI Mode, CMD1 can use in this state. However, do not use CMD1 in case of SD Mode.

5) Issue the CMD2 and get the Card ID (CID).

Issue the CMD3 and get the RCA. (RCA value is randomly changed by access, not equal zero)

6) Issue the CMD7 and move to the transfer state.

If necessary, Host may issue the ACMD42 and disabled the pull up resistor for Card detect.

7) Issue the ACMD13 and poll the Card status as SD Memory Card. Check SD_CARD_TYPE value. If significant 8 bits are "all zero", that means SD Card. If it is not, stop initialization.

8) Issue CMD7 and move to standby state.

Issue CMD9 and get CSD.

Issue CMD10 and get CID.

9) Back to the Transfer state with CMD7.

Issue ACMD6 and choose the appropriate bus-width.

Then the Host can access the Data between the microSD card as a storage device.

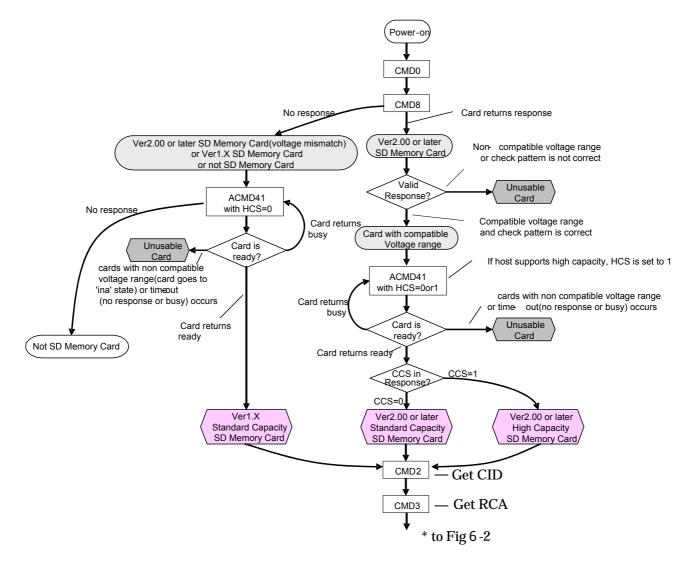


Fig 6-1. microSD card Initialize Procedure

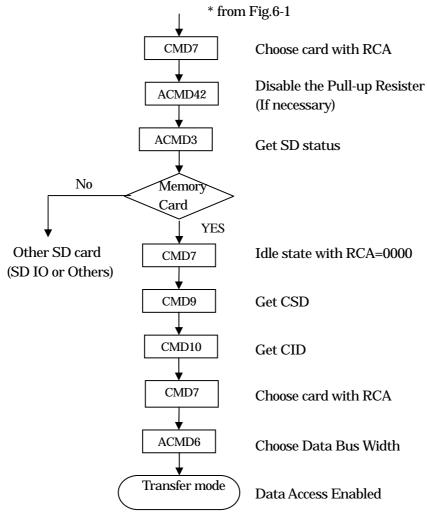


Fig 6-2. microSD card Initialize Procedure

6.3.2 DC Characteristics

Table 6: DC Characteristics

Item		Symbol	Condition	MIN.	Тур.	MAX.	Unit	Note
Supply	/ Voltage		-	2.7	-	3.6	V	
Input	High Level	V _{IH}	-	VDD*0.625	-	-	V	
Voltage	Low Level	V _{IL}	-	-	-	VDD*0.25	V	
Outout	High Level	V _{OH}	VDD = 2V IOH = -100uA	VDD*0.75	-	-	V	
Output Voltage	Low Level	V _{OL}	VDD = 2V IOL = 100uA	-	-	VDD*0.125	V	
Standb			3.6V Clock 25MHz	-	-	30	mA	@25 deg
Standby Current		I _{CC1}	3.0V Clock Stop	-	-	0.55		@25 deg
Operation Current *)		3.6V/25	3.6V/25MHz,	-	-	150	m۸	Write
		I _{CC2}	50MHz	-	-	150	mA	Read
•	tage Setup ime	Vrs	-	-	-	250	ms	

*) Peak Current: RMS value over a 10 usec period

Table 7: Signal Capacitance

Item	Symbol	Min.	Max.	Unit	Note		
Pull up Resistance	R _{CMD} R _{DAT}	10	100	K Ohm			
Bus Signal Line Capacitance	CL	-	250	pF	F _{PP} <5MHz (21Cards)		
Bus Signal Line Capacitance	CL	-	100	pF	F _{PP} <20MHz (7Cards)		
Single Card Capacitance	C _{CARD}	-	10	pF			
Pull up Resistance inside card(pin1)	R _{DAT3}	10	90	K Ohm			

Note: WP pull-up (R_{wp}) Value is depend on the Host Interface drive circuit.

6.3.3 AC Characteristics

۸

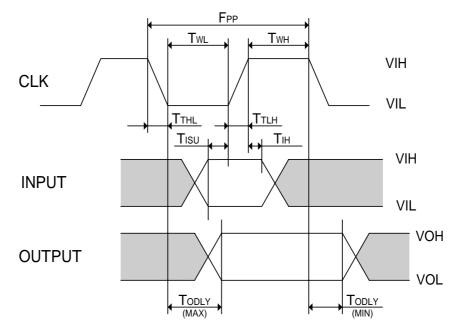


Fig 7: AC Timing Diagram

Table 8: AC Characteristics

Item	Symbol	Min.	Max.	Unit	Note
Clock Frequency (In any Sates)	Fsty	0	25	MHz	CL<100pF (7Cards)
Clock Frequency (Data transfer Mode)	Fpp	0.1	25	MHz	CL<100pF (7Cards)
Clock Frequency (Card identification Mode)	Fod	100	400	kHz	CL<250pF (21Cards)
Clock Low Time	T _{WL}	10	-	ns	CL<100pF
Clock High Time	T _{WH}	10	-	ns	(7Cards)
Clock Rise Time	T_{TLH}	-	10	ns	(7 Calus)
Clock Fall Time	T _{THL}	-	10	ns	
Clock Low Time	T _{WL}	50	-	ns	
Clock High Time	T _{WH}	50	-	ns	C∟ < 250pF
Clock Rise Time	T _{TLH}	-	50	ns	(21Cards)
Clock Fall Time	T _{THL}	-	50	ns	
Input Setup Time	T _{ISU}	5	-	ns	C∟ < 25pF
Input Hold Time	T _{IH}	5	-	ns	(1Cards)
Output Delay Time	T _{ODLY}	0	14	ns	(TCalus)

7. Card Internal Information

7.1. Security Information

MKB (Media Key Block) and Media ID are Standard Information. These informations are compliance with the CPRM. Note: The security information is NOT Development information for evaluation.

Host System shall be compliance with the CPRM to use the security function.

This information is kept as confidential because of security reasons.

7.2. microSD Card Registers

The microSD card has six registers and SD Status information: OCR, CID, CSD, RCA, DSR, SCR and SD Status. DSR IS NOT SUPPORTED in this card.

There are two types of register groups.

MMC compatible registers: OCR, CID, CSD, RCA, DSR, SCR SD card Specific: SD Status

Resister	Bit Width	Description			
Name					
OCR	32	Operation Conditions (VDU Voltage Profile and Busy Status Information)			
CID	128	Card Identification information			
CSD	128	Card specific information			
RCA	16	Relative Card Address			
DSR	16	Not Implemented (Programmable Card Driver): Driver Stage Register			
SCR	64	SD Memory Card's special features			
SD Status	512	Status bits and Card features			

Table.9 : microSD card Registers

7.2.1. OCR Register

This 32-bit register describes operating voltage range and status bit in the power supply. (Refer Appendix 2. for the detail)

OCR bit	VDD voltage window	Initial value					
position		4GB 8GB					
31	Card power up status	"0" =	busy				
	bit(busy)	"1" =	ready				
30-24	reserved	All	'0'				
23	3.6 – 3.5	1					
22	3.5 – 3.4	1					
21	3.4 – 3.3	1					
20	3.3 – 3.2	1					
19	3.2 – 3.1	1					
18	3.1 – 3.0	1					
17	3.0 – 2.9	1					
16	2.9 – 2.8	1					
15	2.8 – 2.7	1					
14	2.7 – 2.6	C)				
13	2.6 - 2.5	C)				
12	2.5 – 2.4	C)				
11	2.4 – 2.3	C)				
10	2.3 – 2.2	C)				
9	2.2 – 2.1	C)				
8	2.1 – 2.0	C)				
7	2.0 – 1.9	0					
6	1.9 – 1.8	C)				
5	1.8 – 1.7	0					
4	1.7 – 1.6	0					
3-0	reserved	All 'O'					

Table 10: OCR register definition

bit 23-4: Describes the microSD Card Voltage

bit 31 indicates the card power up status. Value "1" is set after power up and initialization procedure has been completed.

7.2.2. CSD Register

CSD is Card-Specific Data register provides information on 128bit width. Some field of this register can writable by PROGRAM_CSD (CMD27).

		10	able.11: CS			
					Initial Value	
Field	Wid	Cell	CSD	4GB	8GB	
	th	Type ⁽¹⁾	slice			
CSD_STRUCTURE	2	R	[127:126]		01	
-	6	R	[125:120]		AII 'O'	
TAAC	8	R	[119:112]		0_0001_110(1ms))
NSAC	8	R	[111:104]		0000000	
TRAN_SPEED	8	R	[103:96]		0_0110_010(25Mbp	s)
CCC	12	R	[95:84]		0_1_0_1_1_0_1_1_0_1	1_0_1
READ_BL_LEN	4	R	[83:80]	1001	1001	
READ_BL_PARTIAL	1	R	[79:79]		0	
WRITE_BLK_MISALIGN	1	R	[78:78]		0	
READ_BLK_MISALIGN	1	R	[77:77]		0	
DSR_IMP	1	R	[76:76]		0	
-	6	R	[75:70]		AII 'O'	
C_SIZE	22	R	[69:48]	0x1DFF	0x3BFF	
-	1	R	[47:47]		0	
ERASE_BLK_EN	1	R	[46:46]		1	
SECTOR_SIZE	7	R	[45:39]		11_1111_1	
WP_GRP_SIZE	7	R	[38:32]		000_0000	
WP_GRP_ENABLE	1	R	[31:31]		0	
-	2	R	[30:29]		00	
R2W_FACTOR	3	R	[28:26]		010	
WRITE_BL_LEN	4	R	[25:22]		1001	
WRITE_BL_PARTIAL	1	R	[21:21]		0	
-	2	R	[20:16]		AII 'O'	
FILE_FORMAT_GRP	1	R	[15:15]		0	
COPY	1	R/W ⁽¹⁾	[14:14]		0	
PERM_WRITE_PROTECT	1	R/W ⁽¹⁾	[13:13]		0	
TMP_WRITE_PROTECT	1	R/W	[12:12]		0	
FILE_FORMAT	2	R	[11:10]		00	
-	2	R	[9:8]		AII 'O'	
CRC	7	R/W	[7:1]		(CRC)	
-	1	-	[0:0]		1	

Table.11: CSD Register

Cell Types: R: Read Only, R/W: Writable and Readable, R/W(1): One-time Writable / Readable Note: Erase of one data block is not allowed in this card. This information is indicated by "ERASE_BLK_EN".

Host System should refer this value before one data block size erase.

CSD_STRUCTURE

Version number of the related CSD structure.

CSD STRUCTURE	CSD STRUCTURE	Valid for SD PHYSICAL LAYER	
	VERSION	SPECIFICATION Version	
0	CSD Version 1.0	Version 1.0	
1-3	Reserved		

Table 12-1:CSD_STRUCTURE

→ Version 1.0 Compliant

• TAAC

Defines the asynchronous part of the data access time.

Table 12-2. TAAC Access Time Definition		
TAAC bit	Code	
2:0	Time Unit 0 = 1ns, $1 = 10$ ns, $2 = 100$ ns, $3 = 1 u$ S, $4 = 10 u$ S, $5 = 100 u$ S, 6 = 1ms, $y = 10$ ms	
6:3	Time Value 0 = Reserved, 1 = $1.0,2 = 1.2,3 = 1.3,4 = 1.5,5 = 2.0,$ 6 = $2.5,$ 7 = $3.0,8 = 3.5,9 = 4.0,A = 4.5,B = 5.0,C = 5.5,D = 6.0,E = 7.0,F = 8.0$	
7	Reserved	

Table 12-2: TAAC Access Time Definition

→<u>1ms</u>

•NSAC

Defines the worst case for the clock dependent factor of the data access time.

Unit is 100 clock cycle.

Total access time equal TAAC plus NSAC, calculation with actual clock frequency.

This is average delay by the first clock out put for data block.

→ 0 clock Cycle

•TRAN_SPEED

The following table defines the maximum data transfer rate per one data line.

TRAN_SPEED bit	Code	
2:0	Transfer Rate Unit 0 = 100kbit/s,1 = 1Mbit/s,2 = 10Mbit/s,3 = 100Mbit/s, 4-7 = Reserved	
6:3	Time Value 0 = Reserved,1 = $1.0,2 = 1.2,3 = 1.3,4 = 1.5,5 = 2.0,$ 6 = $2.5,$ 7 = $3.0,8 = 3.5,9 = 4.0,A = 4.5,B = 5.0,C = 5.5,D = 6.0,E = 7.0,F = 8.0$	
7	Reserved	

Table 12-3: Maximum Data Transfer Rate Definition

 \rightarrow Trans Rate is 25Mbps

7. Card Internal Information

7.1. Security Information

MKB (Media Key Block) and Media ID are Standard Information. These informations are compliance with the CPRM. Note: The security information is NOT Development information for evaluation.

Host System shall be compliance with the CPRM to use the security function.

This information is kept as confidential because of security reasons.

7.2. microSD Card Registers

The microSD card has six registers and SD Status information: OCR, CID, CSD, RCA, DSR, SCR and SD Status. DSR IS NOT SUPPORTED in this card.

There are two types of register groups.

MMC compatible registers: OCR, CID, CSD, RCA, DSR, SCR SD card Specific: SD Status

Resister	Bit Width	Description
Name		
OCR	32	Operation Conditions (VDU Voltage Profile and Busy Status Information)
CID	128	Card Identification information
CSD	128	Card specific information
RCA	16	Relative Card Address
DSR	16	Not Implemented (Programmable Card Driver): Driver Stage Register
SCR	64	SD Memory Card's special features
SD Status	512	Status bits and Card features

Table.12-4 : microSD card Registers

• READ_BLK_MISALIGN

Define whether the data block to be read by one command can be spread over more than one physical block of the Flash Memory Device.

READ_BLK_MISALI GN	Across Block Boundaries Read
0	Not Allowed
1	Allowed

Table 12-7:READ BLK MISALIGN

 \rightarrow <u>"0": Invalid on this card</u>

DSR_IMP

If set, a driver stage register (DSR) is implemented (supported).

Table 12-8 :DSR_IMP		
DSR_IMP	DSR Type	
0	DSR NOT Implemented	
1	DSR Implemented	

 \rightarrow <u>"0": DSR NOT implemented</u>

·C_SIZE

This parameter is used to compute the user's data card capacity(Not include the security area) as below.

```
Memory Capacity = BLOCKNR * BLOCK_LEN
```

 \rightarrow The user's data card capacity is as below.

512MB: 488.5MB 1GB: 982.5MB

• VDD_R_CURR_MIN, VDD_W_CURR_MIN

The maximum values for Read/Write currents at VDD:MINIMUM.

Tab 12-9 VDD_R_CURR_MIN, VDD_W_CURR_MIN VDD_R_CURR_MIN VDD_W_CURR_MIN	Code for current consumption @ VDU
2:0	0 = 0.5mA,1 = 1mA,2 = 5mA,3 = 10mA,4 = 25mA, 5 = 35mA,6 = 60mA,7 = 100mA

 \rightarrow 60mA@Vdd = 2.7 V (Minimum)

• VDD_R_CURR_MAX, VDD_W_CURR_MAX

The maximum values for Read/Write currents at VDD:MAXMUM.

Table 12-10:VDD R CURR MAX,VDD W CURR MAX

VDD_R_CURR_MAX VDD_W_CURR_MAX	R/W current Maximum
2:0	0 = 0.5mA,1 = 5mA,2 = 10mA,3 = 25mA, 4 = 35mA,5 = 45mA,6 = 80mA,7 = 200mA

 \rightarrow 80mA @VDU = 3.6 V (Maximum) on this card

·C_SIZE_MULT

This parameter is used to compute the user's data card capacity not include the security protected are refer to C_SIZE.

) i deter ier alle Berliee eize
MULT
$2^2 = 4$
$2^3 = 8$
2 ⁴ = 16
2 ⁵ = 32
$2^6 = 64$
2 ⁷ = 128
2 ⁸ = 256
2 ⁹ = 512

512MB : 2⁸ = 256, 1GB: 2⁹ = 512

• ERASE_BLK_EN

(Caution!: This is different from MMC. Please be careful.)

WRITE_BL_LEN defines whether erase of one write block(see WRITE_BL_LEN) is allowed.

Table12-12:ERASE_BLK_EN

ERASE_BLK_EN	Description
0	Host cannot erase by WRITE_BL_LEN
1	Host can erase by WRITE_BL_LEN

→<u>"1" : Can erase by WRITE BL LEN unit</u>

So should be check this value, and recognize how to erase.

SECTOR_SIZE

Sector defines the minimum erasable size. SECTOR_SIZE indicates the minimum erasable size as the number of write blocks.

 \rightarrow <u>1 Sector-size = 128 Write Blocks on this card</u>

•WP_GRP_SIZE

WP_GRP_SIZE defines the minimum number of sectors that can be set for the write protect group (WP_Group). A value of '0' means 1WP-Group = 1 erase sector, '127 means1WP-Group = 128 sectors.

 \rightarrow <u>"1" : 1WP-Group is one sector on this card</u>

•WP_GRP_ENABLE

A value of "0" means not implemented (supported) the WP-Group functions.

WP_GRP_ENA BLE	Description
0	NOT Implemented
1	Implemented

Table12-13:WP_GRP_ENABLE

 \rightarrow <u>"0": WP Group is not Implemented on this card</u>

R2W_FACTOR

That is calculated R2W FACTOR defines a multiple number for typical write time as a multiple of the read access time.

R2W_FACTOR	Multiples of read Access Time
0	1
1	2(Write half as fast as read)
2	4
3	8
4	16
5	32
6,7	Reserved

Table12-14:R2W FACTOR

 \rightarrow <u>"5": Typical write time = Read Access timex32 on this card</u>

•WRITE_BL_LEN

The maximum write block length is calculated as $2^{WRITE_BL_LEN}$.

WRITE_BL_LEN	Block Length			
0-8	Reserved			
9	2 ⁹ = 512Bytes			
•••				
11	2 ¹¹ = 2048Bytes			
12-15	Reserved			

Table12-15:DATA Block Length

 \rightarrow "9" :512Bytes on this card

• WRITE_BL_PARTIAL

WRITE_BL_LEN defines whether partial block write is available.

Table12-16:Write Data	a size
-----------------------	--------

WRITE_BL_PARTIAL	Block Oriented write Data size		
0	Only the WRITE_BL_LEN size or 512Bytes are available		
1	Partial size (Minimum 1Byte) write available		

 \rightarrow "0": Partial size write is not available on this card

•FILE_FORMAT_GRP/FILE_FORMAT

Indicates the selected group of file format group and file format.

FILE FORMAT GRP FILE FORMAT Kinds Hard disk-like File system with partition table 0 0 0 1 DOS FAT(floppy-like) with boot sector only (No partition table) 2 0 Universal File Format 0 3 Others/Unknown 0,1,2,3 1 Reserved

Table12-17:File Format

Further information is given in SD Memory Card FILE SYSTEM SPECIFICATION.

 \rightarrow [0.0] : Hard disk-like file system with partition table on this card

• COPY

Defines the contents of this card is original (=0) or duplicated (1). This bit is one time programmable.

Table12-18:COPY

COPY	Description
0	Original
1	Сору

 \rightarrow <u>"0": Original on this card</u>

• PERM_WRITE_PROTECT

Permanently protects the whole card content against write or erase . This bit is one time programmable.

Table12-19:PERM_WRITE_PROTECT

PERM_WRITE_PROTECT	Description			
0	Not protected/Writable			
1	Permanently Write protected			

 \rightarrow "0": Not Protected/Writable on this card

•TMP_WRITE_PROTECT

Temporarily protects the whole card content against write or erase .

Table12-20:TMP_WRITE_PROTECT

TMP_WRITE_PROTECT	Description
0	Not protected/Writable
1	Temporarily Write Erase protected

 \rightarrow "0": Not Protected/Writable on this card

• CRC

Calculated CRC for default data is set here. Host System is responsible to re-calculate this CRC if any CSD contents are changed.

7.2.4. RCA Register

The writable 16bit relative card address register carries the card address in SD Card mode.

7.2.5. DSR Register

This register is not implemented on this card

7.2.6. SCR Register

SCR (SD Card Configuration Register) provides information on SD Memory Card's special features. The size of SCR Register is 64 bit. Table 13: SCR Register

Table 13: SCR Register						
Field	Width	Cell	SCR	Value		
		Туре	Slice	4GB	8GB	
SCR_STRUCTURE	4	R	[63:60]		0000	
SD_SPEC	4	R	[59:56]		0010	
DATA_STAT_AFTER_ERASE	1	R	[55:55]		1	
SD_SECURITY	3	R	[54:52]		011	
SD_BUS_WIDTHS	4	R	[51:48]		0101	
-	16	R	[47:32]		All 'O'	
-	32	R	[31:0]	Reserve	d for manufacture usage	

• SCR_STRUCTURE

Version number of the related structure in the SD Card PHYSICAL LAYER SPECIFICATION.

Table13-1: SCR_STRUCTURE

SCR_STRUCTURE	SCR STRUCTURE VERSION	Valid for SD PHYSICAL LAYER SPECIFICATION
0	SCR Version 1.0	Version 1.0-2.00
1-15	Reserved	

→ "0": Version 1.0 Compliant on this card

•SD_SPEC

Describes the SD PHYSICAL LAYER SPECIFICATION version supported by this card.

Table13-2: SD_SPEC

SD_SPEC	SD PHYSICAL LAYER SPECIFICATION Version
0	Version 1.0-1.01
1	Version 1.10
2	Version2.00
3-15	Reserved

 \rightarrow <u>"2" = Version2.00 Compliant on this card</u>

7.2.6. SD Status

Table14:SD Status

Identifier	Width	Туре	SD Status Slice	Value
DAT_BUS_WIDTH	2	SR	[511:510]	00
SECURED_MODE	1	SR	[509]	0
-	13	-	[508:496]	All '0'
SD_CARD_TYPE	16	SR	[495:480]	0x0000
SIZE_OF_PROTECTED_AREA	32	SR	[479:448]	0x28
-	136	-	[447:312]	All '0'
-	312	-	[311:0]	All 'O'

S: Status bit

R: Set based on Command Response

·DAT_BUS_WIDTH

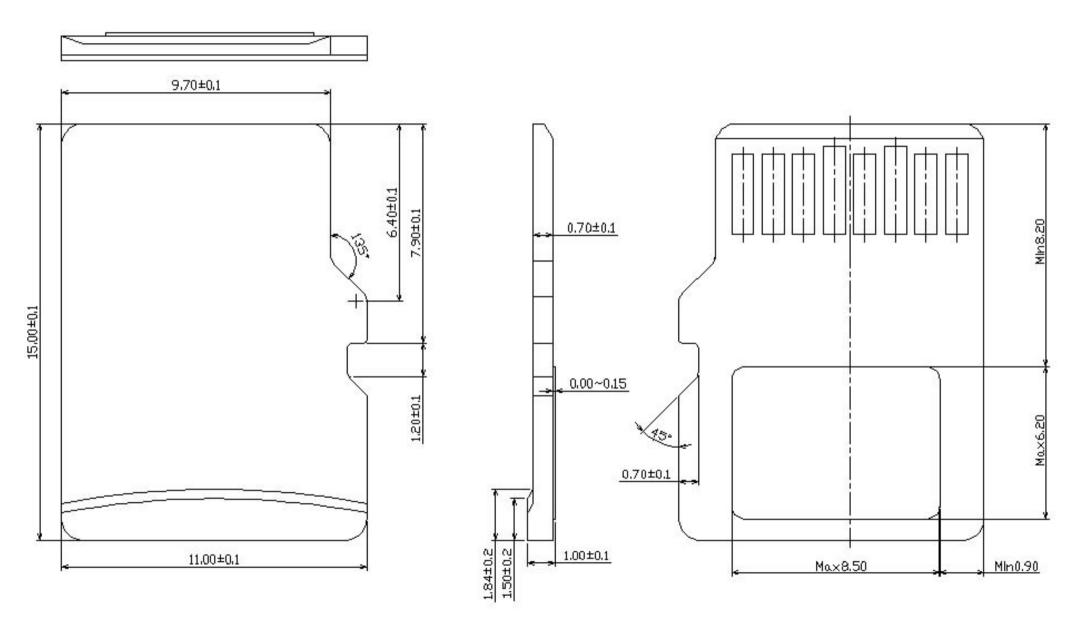
Indicate the currently defined data bus width that was defined by SET_BUS_WIDTH command. Table14-1:DAT BUS WIDTH

DAT_BUS_WIDTH	Bus Width
'00'	1 bit(default)
'01'	Reserved
'10'	4 bit width
'11'	Reserved

• SECURED_MODE

Indicates whether card is in secure mode operation.

SECURED_M ODE	Secured Mode Status
' 0'	NOT Secured Mode
'1'	Secured Mode


• SD_CARD_TYPE

SD Card type described here.(Various SD types to be defined in the future.)

Table14-3:SD_CARD_TYPE

SD_CARD_T YPE	SD Card Type
'0000'h	SD Memory Card

