
Servo Controller
Electronics 123

Located at :

Contact us on :

Visit our website :

http://www.electronics123.co.za
alex
Text Box
102 East Park Ave
Columbiana, OH 44408

alex
Text Box
Tel: 330-482-9944
Fax: 330-266-7307
E-mail: support@electronics123.com

alex
Text Box
www.electronics123.com

To fully understand how the servo works, you need to take a look

under the hood. Inside there is a pretty simple set-up, a small DC

motor, potentiometer, and a control circuit. The motor is attached

by gears to the control wheel. As the motor rotates, the potenti-

ometer's resistance changes, so the control circuit can precisely

regulate how much movement there is and in which direction.

When the shaft of the motor is at the desired position, power sup-

plied to the motor is stopped. If not, the motor is turned in the

appropriate direction. The desired position is sent via electrical

pulses through the signal wire. The motor's speed is proportional

to the difference between its actual position and desired position.

So if the motor is near the desired position, it will turn slowly, oth-

erwise it will turn fast. This is called proportional control. This

means the motor will only run as hard as necessary to accomplish

the task at hand, a very efficient little guy.

Servos are controlled by sending an electrical pulse of variable

width, or pulse width modulation (PWM), through the control

wire. There is a minimum pulse, a maximum pulse, and a repetition

rate. A servo motor can usually only turn 90 degrees in either di-

rection for a total of 180 degree movement. The motor's neutral

position is defined as the position where the servo has the same

amount of potential rotation in the both the clockwise or counter-

clockwise direction. The PWM sent to the motor determines posi-

tion of the shaft, and based on the duration of the pulse sent via

the control wire, the rotor will turn to the desired position. The

servo motor expects to see a pulse every 20 milliseconds (ms) and

the length of the pulse will determine how far the motor turns. For

example, a 1.5ms pulse will make the motor turn to the 90-degree

position. Shorter than 1.5ms moves it to 0 degrees, and any longer

than 1.5ms will turn the servo to 180 degrees, as diagramed below

What is a Servomotor

How is the servo controlled

Servos are used in radio-controlled airplanes to position con-

trol surfaces like elevators, rudders, walking a robot, or oper-

ating grippers. Servo motors are small, have built-in control

circuitry and have good power for their size.

In food services and pharmaceuticals, the tools are designed

to be used in harsher environments, where the potential for

corrosion is high due to being washed at high pressures and

temperatures repeatedly to maintain strict hygiene standards.

Servos are also used in in-line manufacturing, where high rep-

etition is needed yet precise work is necessary.

Of course, you don't have to know how a servo works to use

one, but as with most electronics, the more you understand,

the more doors open for expanded projects and projects' ca-

pabilities. Whether you're a hobbyist building robots, an engi-

neer designing industrial systems, or just constantly curious,

where will servo motors take you?

Last weekend we briefly covered the working of a servo mo-

tor, we explained the basic principals of the controller circuit,

we manufactured our own PCB’s and we successfully assem-

bled and tested each circuit. Now I will fill in the missing links

and go in depth on the working of this circuit and the motor

driver built into the servo casing.

 This is the circuit inside the servo casing, this circuit is tasked

with decoding the pulse width and comparing the on period to

a preset value read from the internal potentiometer. This can

be done with a microcontroller or a rather complex digital and

analog network of IC’s.

The working principle behind this concept is by comparison,

the complexity and size of the circuit is determined by the

method used to do the decoding.

If you do the decoding with a microcontroller you setup the

microcontroller in your hardware as a pulse counter, internally

a cheep microcontroller typically has 2 or 3 timers. Usually

two 8 bit and one 16bit timer. You can use any of these timers

Servo Motor Applications

In workshop

The servo Brain

http://www.jameco.com/webapp/wcs/stores/servlet/JamecoSearch?langId=-1&storeId=10001&catalogId=10001&categoryName=category_root&subCategoryName=Electromechanical&category=35&refine=1&position=1&history=28hlc38h%7CfreeText%7Edc%2Bmotor%5Esearch_type%7Ejamecoal
http://www.jameco.com/webapp/wcs/stores/servlet/JamecoSearch?langId=-1&storeId=10001&catalogId=10001&categoryName=category_root&subCategoryName=Electromechanical&category=35&refine=1&position=1&history=28hlc38h%7CfreeText%7Edc%2Bmotor%5Esearch_type%7Ejamecoal
http://www.jameco.com/webapp/wcs/stores/servlet/JamecoSearch?langId=-1&storeId=10001&catalogId=10001&categoryName=category_root&subCategoryName=Passive%20Components&category=20&refine=1&position=1&history=d0ww5ora%7CfreeText%7Epotentiometer%5Esearch_type%7Eja
http://www.jameco.com/webapp/wcs/stores/servlet/JamecoSearch?langId=-1&storeId=10001&catalogId=10001&categoryName=category_root&subCategoryName=Power%20Supplies%20%26%20Wall%20Adapters&category=45
http://www.jameco.com/webapp/wcs/stores/servlet/JamecoSearch?langId=-1&storeId=10001&catalogId=10001&categoryName=cat_25&subCategoryName=Wire%20%26%20Cable%20%2F%20Bulk%20Wire&category=2550&refine=1&position=1&history=wus4q9hh%7CsubCategoryName%7EWire%2B%2526
http://www.jameco.com/webapp/wcs/stores/servlet/JamecoSearch?langId=-1&storeId=10001&catalogId=10001&freeText=motor&search_type=jamecoall
http://www.jameco.com/webapp/wcs/stores/servlet/JamecoSearch?langId=-1&storeId=10001&catalogId=10001&categoryName=cat_3540&subCategoryName=Electromechanical%20%2F%20Switches%20%2F%20Rotary&category=354055&refine=1&position=1&history=kv7hqebe%7CfreeText%7Eroto
http://www.amazon.com/gp/product/B002B0N5R2/ref=as_li_qf_sp_asin_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B002B0N5R2&linkCode=as2&tag=jameco0b-20
http://www.amazon.com/gp/product/B000H67DDY/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B000H67DDY&linkCode=as2&tag=jameco0b-20
http://www.jameco.com/webapp/wcs/stores/servlet/JamecoSearch?langId=-1&storeId=10001&catalogId=10001&categoryName=category_root&subCategoryName=Robotics&category=75&refine=1&position=1&history=r6g8kbm7%7CfreeText%7Erobot%2Bkit%5esearch_type%7Ejame
http://www.jameco.com/webapp/wcs/stores/servlet/ProductDisplay?langId=-1&productId=358811&position=1&category=7540&catalogId=10001&subCategoryName=Robotics+%2F+Mechanical&storeId=10001&refine=1&app.products.maxperpage=15&parentCategoryId=75%24%247540&categ
http://www.jameco.com/Jameco/Pressroom/DIY.html
http://www.jameco.com/Jameco/workshop/diy/rodney.html

as long as your timer has a counter function internally that is latch-

able to your external setup. You will typically setup your code to

have a reference timer running in the back ground. Lets say for

arguments sake timer 1 is latched to your signal, and timer 0 is

your reference timer running internally, timer 0 will have to have

an overflow period longer than your signal feed rate, or you will

end up reading no pulse hence making your servo change position

continuously. Timer 0 will trigger an interrupt on overflow

(reaching max count value) and then you can tell the microcontrol-

ler to read the value stored in timer1’s register.

Timer 1 can be setup to start counting if it gets a positive going

edge, (from low to high), and to stop counting if the edge goes

negative again. This value read by timer 1 will be the on period of

the signal. By mathematically manipulating the value in your code

you can get a value ranging from 0 to what ever you want. But

since this timer is 16 bit in most situations and to get the best ac-

curacy you will work with the largest number possible.

So lets say for arguments sake an on period of 0.6ms gives you a

value of 600, and an on period of 2.4ms gives you a value of 2400.

this is a rather nice range to work with.

Next you will read your potentiometer value with the microcon-

trollers internal ADC. This will give you a value of say 0 for –90 deg,

and a value of 1023 for +90deg. By comparing the values of the

timer and the ADC with the correct mathematical expression you

can determine the direction of rotation as well as the position of

the servo with pin point accuracy.

“The real world”, your application, here is some real hidden factors

to consider. Microcontrollers can not do more than one thing at a

time. They can not multitask. Yes, sure that might not be a prob-

lem at first then you play with the servo alone, but lets say you add

a led to your circuit and you want to make it change its flashing

speed according to the position of the servo. The refresh rate of

the servo is too fast for you to register any change on the led’s

flashing pattern if you setup your code to run dependent on the

timer setup of the servo. So you will need to write an extra piece

of code for your led. And now for the problem, if you delay the

microcontroller by say 1 sec, or for any period longer than your

servo refresh rate your interrupts will fire and your code will cycle

again and you will end up with one of two things happening, hav-

ing not changed the state of the led, or the servo will only change

position after 1 sec has passed.

To get rid of these unnecessary complex coding methods and timer

Interfacing to the real world

dependencies we can make use of a bit of analog circuitry that

will perform the fixed time dependent functions and this will

free up the microcontroller to have a less time based code

setup.

This was my aim with the circuit we discussed in the work-

shop. By replacing the potentiometer with a digital potenti-

ometer that has volatile memory you only need to write a

value to the digital pot and you are free to do what ever you

want with the microcontroller until you wish to change the

position of the servo again, the analog circuitry takes care of

keeping the servo in position, not your time dependent PWM

signal from the microcontroller.

Note that here the duty cycle is less than 50% so normal A-

stable operation will not work.

The design equation is:

T = R2 * C1

C1 = 100nF

R2 = ?

T1 = 0.6ms

T2 = 2.4ms

Rmin = 6K

Rmax = 24K

Hence I have a fixed resistance value in series with the pot,

these values will give us the time ranges we are looking for.

The diode configuration sets the voltage difference between

pin 7 and 6 causing a duty cycle near 10%.

The circuit

Parts List

LM555D AE125

10nF AD962

100nF AD966

180K AD790

5.6K AD772

330E AD756

220E AD754

ASK FOR DIODES AND TRIM POT FOR THIS CIRCUIT.

DIODE 1A 1000V STANDARD RECT

POT 50K SMD SINGLE TURN

